Long-Range Atomic Order and Entropy Change at the Martensitic Transformation in a Ni-Mn-In-Co Metamagnetic Shape Memory Alloy

نویسندگان

  • Vicente Sánchez-Alarcos
  • Vicente Recarte
  • José Ignacio Pérez-Landazábal
  • Eduard Cesari
  • José Alberto Rodríguez-Velamazán
چکیده

The influence of the atomic order on the martensitic transformation entropy change has been studied in a Ni-Mn-In-Co metamagnetic shape memory alloy through the evolution of the transformation temperatures under high-temperature quenching and post-quench annealing thermal treatments. It is confirmed that the entropy change evolves as a consequence of the variations on the degree of L21 atomic order brought by thermal treatments, though, contrary to what occurs in ternary Ni-Mn-In, post-quench aging appears to be the most effective way to modify the transformation entropy in Ni-Mn-In-Co. It is also shown that any entropy change value between around 40 and 5 J/kgK can be achieved in a controllable way for a single alloy under the appropriate aging treatment, thus bringing out the possibility of properly tune the magnetocaloric effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions to the Transformation Entropy Change and Influencing Factors in Metamagnetic Ni-Co-Mn-Ga Shape Memory Alloys

Ni-Co-Mn-Ga ferromagnetic shape memory alloys show metamagnetic transition from ferromagnetic austenite to paramagnetic (or weak-magnetic) martensite for a limited range of Co contents. The temperatures of the structural and magnetic transitions depend strongly on composition and atomic order degree, in such a way that combined composition and thermal treatment allows obtaining martensitic tran...

متن کامل

Determination of the vibrational contribution to the entropy change at the martensitic transformation in Ni-Mn-Sn metamagnetic shape memory alloys: a combined approach of time-of-flight neutron spectroscopy and ab initio calculations.

The different contributions to the entropy change linked to the austenite-martensitic transition in a Ni-Mn-Sn metamagnetic shape memory alloy have been determined by combining different experimental techniques. The vibrational contribution has been inferred from the vibrational density of states of both the martensitic and austenite phases. This has been accomplished by combining time-of-fligh...

متن کامل

Entropy Change during Martensitic Transformation in Ni50-xCoxMn50-yAly Metamagnetic Shape Memory Alloys

Specific heat was systematically measured by the heat flow method in Ni50−xCoxMn50−yAly metamagnetic shape memory alloys near the martensitic transformation temperatures. Martensitic transformation and ferromagnetic–paramagnetic transition for the parent phase were directly observed via the specific heat measurements. On the basis of the experimental results, the entropy change was estimated an...

متن کامل

Kinetic Arrest of Martensitic Transformation in NiCoMnAl Metamagnetic Shape Memory Alloy

Magnetic properties and martensitic transformation behaviors of NiCoMnAl metamagnetic shape memory alloys were investigated. The kinetic arrest phenomenon was observed at about 40K during thermomagnetization measurements. At temperatures ranging from 4.2 to 200K, magnetic field-induced reverse transformation was confirmed by a pulse magnetometer with a magnetic field up to 45 T. By plotting the...

متن کامل

Exchange Bias and Inverse Magnetocaloric Effect in Co and Mn Co-Doped Ni2MnGa Shape Memory Alloy

Exchange bias effect observed in the Ni1.68Co0.32Mn1.20Ga0.80 alloy confirms the coexistence of antiferromagnetic and ferromagnetic phases in the martensite phase. A large inverse magnetocaloric effect has been observed within the martensitic transformation temperature range, which is originated from modified magnetic order through magnetic-field-induced phase transformation from partially anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014